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Across much of North America, populations of Ameri-
can Kestrels (Falco sparverius) have been in decline for
decades (Farmer et al. 2008, Farmer and Smith 2009,
Smallwood et al. 2009a, Paprocki et al. 2014, Sauer et al.
2014). Hypothesized causes of kestrel declines include
predation by Cooper’s Hawks (Accipiter cooperii; Farmer et
al. 2008), pathogens (e.g., Nemeth et al. 2006), habitat loss
(Sullivan and Wood 2005, Farmer et al. 2008, Bolgiano et
al. 2015), pesticides (Smallwood et al. 2009a, Rattner et al.
2015), and climate change (Steenhof and Peterson 2009b),
yet no hypothesized factor has been supported empirically
(Farmer et al. 2006, Smallwood et al. 2009a). Despite the
effort spent evaluating threats, the lack of a “smoking-gun”
to explain the decline of this charismatic species has led
many professional and citizen scientists to call for action on
several unlikely, and unsupported, threats. Here, we
evaluate and build on hypothesized causes of declines
considered by other authors (e.g., Sullivan and Wood 2005,
Farmer et al. 2008, Smallwood et al. 2009a) to synthesize
conclusions and articulate research needs.

American Kestrels are among the most extensively
monitored raptors in North America. Yet even with
evidence for regional declines across large parts of the
continent (Farmer et al. 2009a, Paprocki et al. 2014, Sauer
et al. 2014), population trends are not clear in all regions.
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For example, in the western U.S., migration counts indicate
that declines began in the late 1990s (Farmer et al. 2008,
Farmer and Smith 2009), whereas data from the National
Audubon Society’s Christmas Bird Count (CBC, Butcher
1990) indicate an opposing pattern of the population
declining from 1975 until the late 1990s, followed by recent
stabilization (Paprocki et al. 2014). The North American
Breeding Bird Survey (BBS, Sauer et al. 2014), meanwhile,
showed a steady decline through 2013 across much of the
western U.S. since data collection began in the late 1960s
(Fig. 1A). Conflicting trends among datasets make it
difficult to determine drivers of decline. Thus, attention
should be paid to potential reasons trends might differ
among datasets and situations where trends in monitoring
might become decoupled from actual population levels.

Here, we examine what is known about the decline of
the American Kestrel to identify avenues of research that
may elucidate the cause, or causes, of decline. We also
highlight areas of research that would increase the utility of
different monitoring programs because trends in monitor-
ing data can lend important insight into the cause of a
decline (Mace et al. 2008, Di Fonzo et al. 2013, Shoemaker
and Akcakaya 2014). Our research recommendations
present an evidence-based path forward toward a demo-
graphic understanding of the decline of North America’s
smallest falcon.

A MYSTERIOUS DECLINE

The preponderance of the evidence suggests “we have
been observing prolonged, steady declines” (Smallwood
et al. 2009a) in many populations of American Kestrels.
Indeed, data from the BBS indicate that many popula-
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Figure 1. (A) Average abundance of American Kestrels observed per year along Breeding Bird Survey (BBS) routes with

results for select Bird Conservation Regions broken out. Estimates are derived from Sauer et al. (2014). (B) Expected
trends in populations of American Kestrels if declines were caused by decreased adult survival (0.01 per year) starting in
1990 (1990 Threat), steadily decreasing adult survival (0.01 per year) since 1966 (Increasing Threat), and depressed but
constant survival (95% of base value) since 1966 (Stable Threat). Base values of vital rates were those used by McClure et
al. (2017, adult survival = 0.4, juvenile survival = 0.1, fecundity = 1.6, and immigration = 0.44). Note that expected trends
would be similar regardless of which vital rate is depressed. For reference, we also present the observed survey-wide trend
in BBS data for American Kestrels (survey-wide BBS) derived from Sauer et al. (2014).

tions have been declining consistently since data collec-
tion began in the late 1960s (Fig. 1A). Data from several
nest-box programs also show a steady decline (Smallwood
et al. 2009a). Paprocki et al. (2014) examined data from
the CBC in western North America and found that counts
of wintering American Kestrels declined from the mid-
1970s through the mid-1990s and then reached a plateau.
However, to be useful, trends in data from monitoring
programs must generally be positively correlated with
actual population levels. If this assumption of positive
correlation is violated, it is difficult to clearly discern the
rate and scope of declines. Observed changes in kestrel
biology over the past decade might decouple population
indices from true population levels. For example, in
western North America, changes in migration distance

have caused the wintering distribution of the American
Kestrel to shift northward in recent decades, which is
affecting apparent trends in data collected by the CBC
(Paprocki et al. 2014). Likewise, observed changes in
kestrel phenology induced by climate change (e.g.,
Steenhof and Peterson 2009b, Heath et al. 2012, Van
Buskirk 2012, Smith et al. 2016) may alter the detection
rate of kestrels during fixed-date annual surveys, poten-
tially inducing trends in yearly counts (Simons et al. 2007,
McClure et al. 2011, Heath et al. 2012). Studies of nest-
box occupancy are also potentially problematic because
changes in the availability of suitable habitat in surround-
ing areas may induce false trends in occupancy (VanCamp
and Henny 1975, Hayward et al. 1992, McClure et al.
2017).
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In addition to changes in kestrel distribution and
behavior, differences in methods and target populations
might lead to conflicting trends in population indices. For
example, migration counts and the BBS have inherently
different sampling methods (i.e., counts from fixed
monitoring stations along migration routes vs. roadside
sampling during breeding season), which may explain
differences among trends (Bednarz et al. 1990, Farmer et
al. 2007). It is often uncertain which breeding populations
are sampled during migration counts; changes in migratory
patterns, as observed for the American Kestrel (e.g., Van
Buskirk et al. 2009, Heath et al. 2012, Van Buskirk 2012,
Paprocki et al. 2014), can confound interpretation of long-
term population trends (Fuller and Mosher 1981, Viverette
et al. 1996), making it difficult to compare to breeding-
season data. For example, through 2013 trends in BBS data
from western Bird Conservation Regions including the
Northern and Southern Rockies and the Great Basin,
among others, all showed steady declines since data
collection began in the late 1960s (Fig. 1A). This trend is
in contrast with the steepening declines observed at
western hawk watch sites since the mid-1990s (Farmer et
al. 2008, Farmer and Smith 2009). It is unclear if this
dissimilarity is due to actual differences in trends of the
populations surveyed or changes in biological patterns,
such as decreased migration tendency due to climate
change, causing relationships between data collected and
population trends to be decoupled. Although BBS data are
imprecise for many raptors because of low density and
detectability, the American Kestrel is an exception because
it has relatively high detectability and occurs near roads
(Farmer et al. 2007). Further, BBS data allow assessments of
specific regional populations. We therefore view migration
counts as a valuable supplement to BBS data (see Dunn et
al. 2005) for the American Kestrel, but inferences from
either program must consider the methods employed
(Nolte et al. 2016), the populations sampled, and potential
changes in behavior and distribution.

UNKNOWN CAUSES

To identify potentially fruitful avenues of research, we
must consider evidence for hypothesized causes of decline.
Smallwood et al. (2009a) quantitatively discounted preda-
tion by Cooper’s Hawks as a potential general cause of
decline and qualitatively discounted habitat loss and
environmental contaminants within their study sites as a
cause of decline for their nest-box populations. Important-
ly, Smallwood et al. (2009a) noted that West Nile virus was
unlikely to be a cause of decline because it arose in the
1990s, whereas kestrels have been declining since at least
the 1960s.

Recent evidence suggests that neonicotinoid pesticides
have contributed to population declines of farmland birds
in the Netherlands (Hallmann et al. 2014). It is possible,
albeit untested, that these pesticides also affect populations
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of American Kestrels. Yet, these pesticides came into use in
the mid-1990s (Mineau and Palmer 2013), eliminating
them from contention as the singular cause of kestrel
population declines. There are many other potential
threats that have arisen since American Kestrels began
declining, and population recovery certainly might depend
on managing these new threats. However, any threat that
appeared after the 1960s did not initiate or noticeably alter
the rate of decline observed in populations of American
Kestrels (Fig. 1B).

Although Smallwood et al. (2009a) quantitatively tested,
and rejected, the hypothesis that predation by Cooper’s
Hawks is causing kestrel declines, this hypothesis is perhaps
the most often suggested to us by both professional and
citizen scientists. The pattern of the kestrel decline can also
help to examine the Cooper’s Hawk hypothesis. The
increase in Cooper’s Hawks has occurred mostly since the
1970s (Farmer et al. 2008, Sauer et al. 2014), and one would
assume that if Cooper’s Hawks were a threat to populations
of American Kestrels that those populations would decline
faster as Cooper’s Hawks increased. Yet, declines of kestrel
populations do not seem to be accelerating (Fig. 1B). It is
possible that increasing predation is indeed causing
systematic changes in survival, but the changes are so slight
that the effect on observed population growth rates has
remained relatively constant, or that predation by Cooper’s
Hawks only affects populations locally.

Destruction and alteration of breeding habitat is a
potential threat to many species and the American Kestrel
is no exception (Sullivan and Wood 2005, Farmer et al.
2008, Smallwood et al. 2009a, Wommack et al. 2014,
Bolgiano et al. 2015). American Kestrels are secondary
cavity nesters (Smallwood and Bird 2002) and several
studies have demonstrated population increases after the
installation of nest boxes (Nagy 1963, Hamerstrom et al.
1973, Stahlecker and Griese 1979, Bloom and Hawks 1983,
Wilmers 1983, Toland and Elder 1987, Smallwood and
Collopy 2009), leading some to suggest that a lack of nest
cavities might be causing population declines (Sullivan and
Wood 2005). However, that occupancy of nest boxes is
declining at several locations across North America (Small-
wood et al. 2009a) suggests that those populations are not
limited by nest sites and therefore that a loss of nest cavities
is not a cause of decline in those areas (McClure et al.
2017)—i.e., previously productive breeding sites should not
be vacant if nest sites are limiting.

It is possible that several threats, including those
mentioned above, arose and subsided over time, interact-
ing in such a way as to produce an apparently steady decline
in breeding populations of American Kestrels across most
of North America. Multiple threats could also combine
additively to affect vital rates (Bolgiano et al. 2015), and
kestrel populations might be facing region-specific threats
(Wommack et al. 2014). Indeed, although many breeding
populations of American Kestrels are declining at different
rates, BBS data show those rates remained relatively steady
since monitoring began through 2013 (Sauer et al. 2014).
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These potentially complicating aspects of kestrel ecology
highlight that easy answers to kestrel declines are elusive.
The most parsimonious demographic mechanism under-
lying a slow and steady decline seems to be that one or more
vital rates (reproduction or survival) are consistently
depressed (Fig. 1B). That vital rates would remain
unchanged since the 1960s seems extraordinary, however,
given the various dynamic threats faced by populations of
birds (e.g., Loss et al. 2015). Therefore, the most concise
statement we can make regarding what is known about the
underlying cause of kestrel declines is that consistently too
many kestrels seem to be dying relative to the number
fledged each year.

A PATH FORWARD

Monitoring. Differences among population trends
generated by disparate monitoring methods within regions
highlight the enigmatic nature of kestrel declines and the
need to evaluate the potential situations where population
indices do not track population levels. Count data such as
the BBS, CBC, and migration counts provide important
information regarding population trends, but research
should be conducted to bolster their inference. For
example, given the documented effects of climate change
on the phenology and distribution of the American Kestrel
(e.g., Van Buskirk et al. 2009, Heath et al. 2012, Van Buskirk
2012, Paprocki et al. 2014, Smith et al. 2016), researchers
should consider the possibility of false trends being
induced by changes in kestrel distribution (Paprocki et al.
2014) or detectability (Simons et al. 2007, McClure et al.
2011, Heath et al. 2012). Studies using tracking devices
(e.g., geolocators; Béachler et al. 2010), or DNA (e.g., single
nucleotide polymorphisms; Ruegg et al. 2014) can also
examine migratory connectivity, thereby elucidating which
breeding populations are being sampled at hawk watch
sites and by CBC circles.

Standardized counts of adult birds (BBS, CBC, migra-
tion counts) can also be problematic because of their
limited historical reach relative to the time frame for
changes in the size of kestrel populations. The earliest
large-scale standardized monitoring of American Kestrels
began in 1966 with the inception of the BBS, when kestrels
seemed to be already in decline. It is therefore unknown
when most populations of the American Kestrel began
declining. Researchers should consider indirect methods
such as atlas data or historical accounts to determine how
long kestrels have been in decline. For example, Greenberg
and Droege (1999) used data from atlases and historical
descriptions of abundance to demonstrate that Rusty
Blackbirds (Euphagus carolinus) had been in decline since
the 1800s. Like the Rusty Blackbird, the American Kestrel is
widespread, declining, and often mentioned in historical
accounts (C. McClure unpubl. data). The methods
employed by Greenberg and Droege (1999) might there-
fore be employed for the American Kestrel. Determining

SHORT COMMUNICATIONS

VoL. 51, No. 4

historical trends in kestrel populations might allow
researchers to test hypotheses regarding the original causes
of decline, and put the current trends into a more long-
term perspective.

Monitoring of nest boxes by professional and citizen
scientists has the potential to generate tremendous
amounts of fine-scale data on kestrel occurrence suitable
for aggregation and analysis across its breeding range (e.g.,
The Peregrine Fund’s American Kestrel Partnership, www.
kestrel.peregrinefund.org). However, the ability of changes
in the availability of unmonitored nest cavities to induce
misleading trends in nest-box data is underappreciated and
should be investigated. For example, McClure et al. (2017)
demonstrated that if the availability of natural cavities
decreases, occupancy of nest boxes might actually rise
because the nest boxes would make up a higher proportion
of available nest sites (see also VanCamp and Henny 1975,
Hayward et al. 1992). Conversely, occupancy of established
nest-box programs might decline if private citizens erect
nest boxes nearby, unbeknownst to managers of estab-
lished programs (McClure et al. 2017). Researchers should
therefore develop analytical and experimental methods
such as the simulations used by McClure et al. (2017) to aid
in the interpretation of trends in nest-box occupancy.
Further, researchers should foster open communication
with citizens monitoring private boxes near a professional
study site.

Studies to improve inference from monitoring data will
help to clarify the spatial and temporal scope of kestrel
declines, but in the meantime researchers must use existing
methods for inference into the extent of the decline.
Researchers should develop methods to integrate informa-
tion from different kestrel monitoring programs into a
composite index. Butcher and Niven (2007) combined BBS
and CBC data for improved inference into bird population
trends. Van Strien et al. (2001) combined data from
national bird-monitoring programs in Europe that had
different protocols into a composite index that spanned
across countries. Paprocki et al. (2017) used data from the
Raptor Population Index (Bildstein et al. 2008) and CBC to
examine population trends for Red-tailed Hawks (Buteo
Jjamaicensis) across North America. The states of Florida
(Florida Fish and Wildlife Conservation Commission
[FFWCC] 2013) and New Jersey (Smallwood et al. 2009b)
have statewide nest-box monitoring programs and The
Peregrine Fund’s American Kestrel Partnership coordi-
nates a citizen science nest-box project across the western
hemisphere. These large-scale nest-box programs could be
combined with count data such as the BBS to gain more
robust inference into population trends. Researchers
might then target regions with strong evidence of a decline
for studies of survival and reproduction to develop a
demographic understanding of the decline of the Ameri-
can Kestrel. Scientists and analysts could also examine
trends across different bird conservation regions to target
areas for demographic studies (e.g., Stanton et al. 2016),
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including areas with stable populations for comparison
purposes.

Studies of Survival. Smallwood et al. (20092a) noted that
because populations using nest boxes were declining
despite seemingly stable habitat conditions and observed
high reproductive rates, the cause of declines may be
increased mortality during the nonbreeding season.
Threats during the breeding season have been the most
hypothesized causes of decline (Sullivan and Wood 2005,
Farmer et al. 2008, Smallwood et al. 2009a). Further,
population growth rates for longer-lived species such as
raptors are generally most sensitive to changes in adult
survival (e.g., Hiraldo et al. 1996, Seether and Bakke 2000,
Clark and Martin 2007). Efforts to examine rates and
drivers of survival of American Kestrels outside of the
breeding season are therefore needed and may lend useful
insight into important drivers of decline. Although there
have been many studies of return rates using nest boxes
(e.g., Katzner et al. 2005, Miller and Smallwood 2009,
Steenhof and Heath 2009, 2013, Steenhof and Peterson
2009a), and some using radiotelemetry to examine
mortality (e.g., Varland and Loughin 1993a, Farmer et al.
2006, Stupik et al. 2015), we are aware of few studies
estimating yearly survival of American Kestrels (Bortolotti
et al. 2002, Hinnebusch et al. 2010, Brown and Collopy
2013). Operators of nest-box programs should therefore
consider banding both nestlings and adults to estimate
apparent yearly survival of both age classes. Estimates of
seasonal survival, particularly outside of the breeding
season, are sorely needed and could be quantified using
bands or other tracking devices (e.g., Varland and Loughin
1993a, Farmer et al. 2006, Stupik et al. 2015).

Similarly, examinations of migratory connectivity and
identification of important migratory routes and wintering
grounds south of the U.S. would help determine whether
mortality outside of the breeding season is a cause of
decline. Goodrich et al. (2012) noted that American
Kestrels are ideal for studies of migratory connectivity
using band returns because they are easily captured during
the breeding season. Indeed, there have been several
studies using band returns to examine kestrel migration
(e.g., Duncan 1985, Henny and Brady 1994, Hoffman et al.
2002). Yet only a small fraction of the band encounter
records for American Kestrels are south of the U.S. (C.
McClure unpubl. data), despite thousands of kestrels
migrating south of the U.S. every year (Bildstein 2004, Lott
2006). Latin America and the Caribbean are therefore
perhaps underappreciated wintering grounds for kestrels
that breed in parts of North America. Important wintering
areas might be identified using ebird (www.ebird.org) data
and migratory connectivity might be examined using
tracking devices or genetic sampling.

Studies of Reproduction. The ease with which kestrels
are monitored and studied using nest boxes has resulted in
a wealth of research regarding the breeding ecology of the
American Kestrel. Differences between natural and artifi-
cial nest sites regarding productivity, imprinting (Brown
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and Collopy 2013), and dispersal are important in
predicting the effects of management using nest boxes.
Unfortunately, nests within natural cavities are difficult to
locate and monitor. Some studies have suggested that nest
success is similar for American Kestrels using natural
cavities and nest boxes (Craig and Trost 1979, Toland
and Elder 1987), but more research is needed to determine
the conditions where nest success might differ between
natural and artificial sites. Programs monitoring both nest
boxes and nearby natural cavities would serve to elucidate
differences between the two substrates. Although natural
cavities are difficult to locate and access, there are protocols
that might be employed and tailored for American Kestrels
(e.g., Dudley and Saab 2003).

There are many kestrel nest-box programs across North
America, often with different protocols for erecting and
monitoring boxes. Standardization of protocol would help
to make results interpretable across studies (Lambrechts et
al. 2012). In general, programs should strive to check boxes
multiple times throughout the breeding season, either at
regular intervals or at important time points. For example,
researchers might check boxes during the egg stage and
then return when eggs are assumed to have hatched.
Estimating the age of nestlings using published aging
guides (Griggs and Steenhof 1993, Klucsarits and Rusbuldt
2007) would allow researchers to approximate the date of
nest initiation and to know when nestlings will be roughly
22 d old. Nests containing nestlings >22 d old are generally
considered to be successful (e.g., Steenhof and Peterson
2009b); therefore, checking nests around that time would
allow researchers to estimate the number of fledglings. Of
course, researchers should take care not to cause prema-
ture fledging.

Researchers should also examine drivers of nest success
within nest boxes. For example, Varland and Loughin
(1993b) noted that nest success of kestrels using nest boxes
placed along an interstate highway in Iowa was similar to
that of other, non-roadside nest-box programs. However,
Strasser and Heath (2013) documented higher nest failure
in boxes that experienced increased levels of road traffic,
likely because of increased noise. The utility of roadside
nest boxes as management tools for American Kestrels is
therefore uncertain and should be examined in the context
of vehicle collisions and noise levels. Other aspects of nest-
box placement and design might affect nest success—and
therefore population levels (e.g., Catry et al. 2009, McClure
et al. 2016)—and should be examined. For instance,
Smallwood et al. (2009b) demonstrated that the size of
patches of suitable habitat affected the occupancy of nest
boxes in New Jersey. Similar studies should examine nest
success relative to cover type and landscape context.
Predator guards can also increase nest success for cavity
nesters (e.g., Cornell et al. 2011) and should therefore be
examined for kestrels.

American Kestrels in Idaho have advanced nest initia-
tion in response to climate change (Steenhof and Peterson
2009b, Heath et al. 2012, Anderson et al. 2016, Smith et al.
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2016). Although perhaps a reasonable assumption, it is
unknown whether kestrels are responding to climate
change across their range. The underlying mechanism
regarding these phenology shifts (e.g., shifts in prey
phenology, shorter migration distances) also deserves more
study. Further, the demographic consequences of this
response to climate change are unknown. Researchers
should therefore use population models to examine
whether the observed responses of American Kestrels to
climate change are affecting populations levels.

Examining the Full Annual Cycle. Although important
individually, survival and reproduction do not act in
isolation—their interaction results in the growth or decline
of a population. All population declines are therefore
problems of demography, and a demographic understand-
ing of the processes driving a population decline requires
knowledge of the rates at which individuals immigrate into
and emigrate from a population. Many nest-box programs
for American Kestrels monitor reproduction, but do not
track individuals and therefore it is unknown how observed
levels of reproduction interact with other demographic
processes to influence population levels. Given enough
resources to both band individuals and monitor reproduc-
tion, nest-box programs can be powerful tools for studying
not only fecundity and survival, but also immigration. For
example, Brown and Collopy (2013) used integrated
population models (Abadi et al. 2010) to examine how
reproduction, survival, and immigration interact to pro-
duce a stable population of American Kestrels in Florida.
Similar studies across declining and stable populations
would allow for demographic comparisons where possibly
depressed vital rates are identified as demographic
mechanisms of decline.

Individual-based models track virtual individuals to
examine emergent, population-level processes (Grimm
and Railsback 2005) and are useful in studying demo-
graphic processes for migratory birds across multiple
seasons (Hostetler et al. 2015). When combined with a
pattern-oriented modeling approach, individual-based
models can aid in the examination of processes that are
not directly observed (Wiegand et al. 2003, Grimm et al.
2005), such as natal dispersal, emigration, and seasonal
carry-over effects. For example, even though natural
cavities are difficult to monitor, individual-based models
could be used to evaluate the population-level effects of
placing nest boxes into a landscape with natural cavities
when the nest boxes either increase or decrease the
reproductive rate of the population. In addition, these
models offer the opportunity to synthesize knowledge on
individual aspects of species dynamics to determine the
interactive effect of population processes on overall
population dynamics.

Ornithologists are recognizing the need for a full-
annual-cycle, demographic understanding of population
dynamics for migratory birds (Hostetler et al. 2015).
Rushing et al. (2016) used information regarding
migratory connectivity to compare drivers of Wood
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Thrush (Hylocichla mustelina) declines on wintering versus
breeding grounds. The problem of kestrel declines also
requires a full-annual-cycle approach. Thus, data from
across the annual cycle might be examined similarly for
the American Kestrel. Simple solutions are unlikely to be
found for the decline of a generalist predator that can
thrive in human-modified habitat, with populations that
range from fully migratory to completely sedentary, and
with a range across two continents. Such an enigmatic
decline as observed for the American Kestrel will
therefore require examination into the full life cycle
across breeding areas, migratory routes, and wintering
grounds.

COMENTARIO: RECOMENDACIONES DE
INVESTIGACION PARA ENTENDER LA DISMINUCION
POBLACIONAL DE FALCO SPARVERIUS A LO LARGO
DE GRAN PARTE DE AMERICA DEL NORTE

RESUMEN.—La naturaleza carismatica y la enigmatica
disminucion poblacional de Falco sparverius ha provocado
el interés y la preocupacion tanto de cientificos (ciudada-
nos y profesionales) como del publico en general. Aunque
se han propuesto diversas razones como causas de esta
disminucion, hay poca o nula evidencia empirica para la
mayoria de las amenazas hipotetizadas y consecuente-
mente no existen recomendaciones de gestion apoyadas
en evidencia empirica. Presentamos recomendaciones
para investigaciones futuras sobre la causa de la disminu-
cion poblacional de F. sparverius. Ademas, sugerimos
prioridades para monitorear e identificar los condicio-
nantes de las tasas de supervivencia y reproduccion a través
de modelos demograficos. Investigaciones sobre la
fenologia, la conectividad migratoria y el uso de cavidades
naturales como nidos mejorarian el seguimiento de F.
sparverius 'y nuestra comprension sobre los declives
poblacionales, mientras que estudios demograficos du-
rante el ciclo anual completo de F. sparverius van a ayudar
a elucidar las causas del declive y las acciones potenciales
de gestion.

[Traduccion del equipo editorial]
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